577 research outputs found

    Charge Distribution Near Oxygen Vacancies in Reduced Ceria

    Full text link
    Understanding the electronic charge distribution around oxygen vacancies in transition metal and rare earth oxides is a scientific challenge of considerable technological importance. We show how significant information about the charge distribution around vacancies in cerium oxide can be gained from a study of high resolution crystal structures of higher order oxides which exhibit ordering of oxygen vacancies. Specifically, we consider the implications of a bond valence sum analysis of Ce7_{7}O12_{12} and Ce11_{11}O20_{20}. To illuminate our analysis we show alternative representations of the crystal structures in terms of orderly arrays of co-ordination defects and in terms of flourite-type modules. We found that in Ce7_{7}O12_{12}, the excess charge resulting from removal of an oxygen atom delocalizes among all three triclinic Ce sites closest to the O vacancy. In Ce11_{11}O20_{20}, the charge localizes on the next nearest neighbour Ce atoms. Our main result is that the charge prefers to distribute itself so that it is farthest away from the O vacancies. This contradicts \emph{the standard picture of charge localisation} which assumes that each of the two excess electrons localises on one of the cerium ions nearest to the vacancy. This standard picture is assumed in most calculations based on density functional theory (DFT). Based on the known crystal structure of Pr6_{6}O11_{11}, we also predict that the charge in Ce6_{6}O11_{11} will be found in the second coordination shell of the O vacancy. Although this review focuses on bulk cerium oxides our approach to characterising electronic properties of oxygen vacancies and the physical insights gained should also be relevant to surface defects and to other rare earth and transition metal oxides.Comment: 20 pages, 23 figures. The replacement file has a new format for the figures are the document layout but no change in content. v3 has the following main changes: 1. The abstract and introduction were extensively revised. 2. Sec. IV was removed. 3. The Conclusion was rewritte

    Electronic and magnetic properties of the ionic Hubbard model on the striped triangular lattice at 3/4 filling

    Get PDF
    We report a detailed study of a model Hamiltonian which exhibits a rich interplay of geometrical spin frustration, strong electronic correlations, and charge ordering. The character of the insulating phase depends on the magnitude of Delta/|t| and on the sign of t. We find a Mott insulator for Delta >> U >> |t|; a charge transfer insulator for U >> \Delta >> |t|; and a correlated covalent insulator for U >> \Delta ~ |t|. The charge transfer insulating state is investigated using a strong coupling expansion. The frustration of the triangular lattice can lead to antiferromagnetism or ferromagnetism depending on the sign of the hopping matrix element, t. We identify the "ring" exchange process around a triangular plaquette which determines the sign of the magnetic interactions. Exact diagonalization calculations are performed on the model for a wide range of parameters and compared to the strong coupling expansion. The regime U >> \Delta ~ |t| and t<0 is relevant to Na05CoO2. The calculated optical conductivity and the spectral density are discussed in the light of recent experiments on Na05CoO2.Comment: 15 pages, 15 figure

    Antiferromagnetic Spin Fluctuations in the Metallic Phase of Quasi-Two-Dimensional Organic Superconductors

    Get PDF
    We give a quantitative analysis of the previously published nuclear magnetic resonance (NMR) experiments in the k-(ET)2X family of organic charge transfer salts by using the phenomenological spin fluctuation model of Moriya, and Millis, Monien and Pines (M-MMP). For temperatures above T_nmr ~ 50 K, the model gives a good quantitative description of the data in the metallic phases of several k-(ET)2X materials. These materials display antiferromagnetic correlation lengths which increase with decreasing temperature and grow to several lattice constants by T_nmr. It is shown that the fact that the dimensionless Korringa ratio is much larger than unity is inconsistent with a broad class of theoretical models (such as dynamical mean-field theory) which neglects spatial correlations and/or vertex corrections. For materials close to the Mott insulating phase the nuclear spin relaxation rate, the Knight shift and the Korringa ratio all decrease significantly with decreasing temperature below T_nmr. This cannot be described by the M-MMP model and the most natural explanation is that a pseudogap, similar to that observed in the underdoped cuprate superconductors, opens up in the density of states below T_nmr. Such a pseudogap has recently been predicted to occur in the dimerised organic charge transfer salts materials by the resonating valence bond (RVB) theory. We propose specific new experiments on organic superconductors to elucidate these issues. For example, measurements to see if high magnetic fields or high pressures can be used to close the pseudogap would be extremely valuable.Comment: 11 pages, 2 figures. Accepted for publication in Phys. Rev.

    Fermi surface of underdoped cuprate superconductors from interlayer magnetoresistance: closed pockets versus open arcs

    Get PDF
    An outstanding question about the underdoped cuprates concerns the true nature of their Fermi surface which appears as a set of disconnected arcs. Theoretical models have proposed two distinct possibilities: (1) each arc is the observable part of a partially hidden closed pocket and (2) each arc is open, truncated at its apparent ends. We show that measurements of the variation in the interlayer resistance with the direction of a magnetic field parallel to the layers can qualitatively distinguish closed pockets from open arcs. This is possible because the field can be oriented such that all electrons on arcs encounter a large Lorentz force and resulting magnetoresistance whereas some electrons on pockets escape the effect by moving parallel to the field. © 2010 The American Physical Society

    Apparent Violation of the Wiedemann-Franz law near a magnetic field tuned metal-antiferromagnetic quantum critical point

    Get PDF
    The temperature dependence of the interlayer electrical and thermal resistivity in a layered metal are calculated for Fermi liquid quasiparticles which are scattered inelastically by two-dimensional antiferromagnetic spin fluctuations. Both resistivities have a linear temperature dependence over a broad temperature range. Extrapolations to zero temperature made from this linear-TT range give values that appear to violate the Wiedemann-Franz law. However, below a low-temperature scale, which becomes small close to the critical point, a recovery of this law occurs. Our results describe recent measurements on CeCoIn5_5 near a magnetic field-induced quantum phase transition. Hence, the experiments do not necessarily imply a non-Fermi liquid ground state.Comment: 4 pages, 2 figures; accepted to Phys. Rev. Let

    Quasiparticles at the verge of localization near the Mott metal-insulator transition in a two-dimensional material

    Get PDF
    The dynamics of charge carriers close to the Mott transition is explored theoretically and experimentally in the quasi two-dimensional organic charge-transfer salt κ\kappa-(BEDT-TTF)2_2Cu[N(CN)2_2]Brx_xCl1−x_{1-x}, with varying Br content. The frequency dependence of the conductivity deviates significantly from simple Drude model behavior: there is a strong redistribution of spectral weight as the Mott transition is approached and with temperature. The effective mass of the quasiparticles increases considerably when coming close to the insulating phase. A dynamical mean-field-theory treatment of the relevant Hubbard model gives a good quantitative description of the experimental data.Comment: 5 pages, 4 figure
    • …
    corecore